
DOM Based Content Extraction via Text Density

Fei Sun, Dandan Song∗ and Lejian Liao∗
Lab of High Volume language Information Processing & Cloud Computing

Beijing Lab of Intelligent Information Technology
School of Computer Science, Beijing Institute of Technology

Beijing, China
{ofey, sdd, liaolj}@bit.edu.cn

ABSTRACT
In addition to the main content, most web pages also con-
tain navigation panels, advertisements and copyright and
disclaimer notices. This additional content, which is also
known as noise, is typically not related to the main sub-
ject and may hamper the performance of web data mining,
and hence needs to be removed properly. In this paper,
we present Content Extraction via Text Density (CETD)—
a fast, accurate and general method for extracting content
from diverse web pages, and using DOM (Document Ob-
ject Model) node text density to preserve the original struc-
ture. For this purpose, we introduce two concepts to mea-
sure the importance of nodes: Text Density and Composite
Text Density. In order to extract content intact, we propose
a technique called DensitySum to replace Data Smoothing.
The approach was evaluated with the CleanEval benchmark
and with randomly selected pages from well-known websites,
where various web domains and styles are tested. The aver-
age F1-scores with our method were 8.79% higher than the
best scores among several alternative methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.3.1 [Content Analysis and Indexing]: Ab-
stracting methods

General Terms
Algorithms, Experimentation

Keywords
Content Extraction, Text Density, Composite Text Density,
DensitySum

1. INTRODUCTION
The explosive growth of the Internet has produced a huge

number of information sources, and its influence continues to

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

increase. Thus, web data mining has become an important
and popular technique for discovering useful information or
knowledge. Such research requires main content (e.g., an
article text) from the web to be gathered, processed and
stored quickly and efficiently. However, the main content
in web pages is often accompanied by a large amount of
additional content such as navigation menus, banner adver-
tisements and copyright notices. Although such information
is expected by website owners and benefits user browsing,
it is unrelated to the topic of the web pages and not sim-
ple enough for computer programs to parse. Thus this in-
formation can be treated as noise, hampering information
gathering and web mining.

In order to improve the performance of web mining and in-
formation retrieval from web pages, content extraction tech-
niques have been developed to remove such noise. Generally,
content extraction improves performance, and is essential for
many real world applications.

Traditionally, building text corpora was a very expensive
and time-consuming process. By automatically download-
ing textual data from the web, extremely large corpora can
be built in a short period, at relatively low cost. There-
fore, the idea of Web as Corpus has been very attractive
for many researchers in Natural Language Processing and
related areas. In order to prepare web data for use as a
corpus, ACL-SIGWAC held the first CleanEval competition
during the summer of 2007 [23].

Additionally, as Pocket-sized devices with small screens
such as PDAs and mobile phones have become ubiquitous,
adapting web pages for small screens has become an increas-
ingly important and challenging task [3, 7].

However, extracting the main content from the web pages
has become more difficult and nontrivial. As early as 2005,
Gibson et al. [13] estimated the noise to account for around
40-50% of the data on the web, and predicted correctly that
this ratio would go on increasing. Meanwhile, web page
layout has become much more complex than before, espe-
cially with the development and widespread use of the Cas-
cading Style Sheets (CSS) technique. We find that most
of the recent web pages use the style sheets and <div> or
 tags for structural information to replace structural
tags within a web page. Many early content extraction tech-
niques failed to keep up with these changes and performed
poorly, because recent web pages no longer include particu-
lar HTML cues (e.g., <table>, <td> and fonts) that they
used before.

In addition, nowadays most additional web page content,
especially advertisements (e.g., Google AdSense), are gen-

erated dynamically, which means template detection algo-
rithms perform poorly. Moreover, they may also break easily
due to the changes in page structure.

In this paper, we propose a highly effective content extrac-
tion algorithm to extract the main content from web pages.
It can not only extract the main content, but also preserve
its original structure information.

Our content extraction technique is based on the following
observation: in a typical web page, the noise is usually highly
formatted and contain less text and brief sentences, whereas
the content is commonly simply formatted and contain more
text but far less hyperlinks than in the noise. Furthermore,
the content is usually an integral part of a web page and
maintains the integrity of the structure, i.e. belongs to an
ancestor node in the DOM tree.

First, we propose two measures for the importance of the
tags in the web pages: Text Density and Composite Text
Density. Once an HTML document is parsed and repre-
sented by a DOM tree, we calculate the text density for
each node. Higher text density implies the node is more
likely to represent a tag with content-text within the web
page. In the case of noise the opposite applies. Furthermore,
we extend the Text Density to the Composite Text Density
by adding statistical information about hyperlinks. To solve
the problem of losing low text density nodes in content, a tai-
lored technique called DensitySum was designed to extract
integral content. The results show that it is a fast, accurate
and general content extraction algorithm which outperforms
many current content extraction algorithms on large and
varied data sets.

One difference between our approach and current methods
is that we make no assumptions about the specific structure
of an input web page, nor do we look for particular HTML
cues. Another is that we can preserve the original struc-
ture of the input pages since all operations are performed
on their DOM trees. Most existing approaches remove all
tags from the HTML document and just output the text of
the contents. They are not very user-friendly, and cannot
be used to extract structured data from the web pages. In
contrast, our method can output cleaned HTML documents
instead of unformatted text.

The rest of the paper is organized as follows: after briefly
reviewing related work in section 2, we propose two different
definitions for text density in section 3. Next, we describe
how to choose the threshold and the algorithm to extract
content. Then, we describe our evaluation setup and com-
pare the performance of our approach with other content
extraction methods, and discuss the results. Finally we of-
fer our conclusions and plans for future research.

2. RELATED WORK
The term Content Extraction (CE) was introduced by

Rahman et al. in 2001 [25]. In the last decade, extrac-
tion of content from web pages has been studied intensively
and numerous methods have been developed.

In the early days of content extraction, some handcrafted
web scrapers (such as NoDoSE [2] or XWRAP [21]) ex-
tracted article text embedded in a common template from
web pages by looking for some HTML cues, using regular
expressions. These were written in a traditional program-
ming language or with some specialized tools designed for
content extraction. The biggest advantage of these methods
was their accuracy. Obviously, the disadvantage lies in the

fact that different regular expressions need to be manually
created for each website. Still, even individual websites em-
ploy multiple structures; furthermore, these websites may
also change structures or layouts over time. All the above
situations mean such approaches require constant updating.

Kushmerick [19] and Davison [8] proposed machine learn-
ing mechanisms to recognize banner advertisements, redun-
dant and irrelevant links in web pages. However, these tech-
niques cannot be put to general use because they require a
large set of manual-labeled training data and domain knowl-
edge to generate classification rules.

The Vision-based Page Segmentation (VIPS) technique
was introduced by Cai et al. [5] in 2003 to divide a web page
into a tree, where the nodes are visually grouped blocks.
Based on the VIPS method, Song et al. [26] presented an
approach to rank block importance for web pages through
learning algorithms using spatial features (such as position
or size) and content features (such as the number of images
and links); and Fernandes et al. [11] developed another way
to compute block importance of a web page by means of
assigning weights to classes of structurally similar blocks.
However, VIPS must partially render a page in order to
analyze it. Additionally, if external style sheets are used,
they should also be retrieved. Therefore, compared to other
techniques, VIPS is resource intensive.

A different approach for content extraction is Template
Detection (TD) algorithms [4, 20, 28, 6, 17] in which collec-
tions of documents based on the same template are used to
learn a common structure. Bar-Yossef et al. presented an
approach to automatically detect templates from the largest
pagelet, i.e. self-contained regions in a web page [4]. Lin et
al. partitioned a page with <table> tags, and identified re-
dundant blocks using an entropy measure over a set of word-
based features [20]. In order to improve the performance of
web page clustering and classification, Yi et al. introduced a
site style tree (SST) structure that labels DOM nodes with
similar styles across pages as uninformative [28]. Chen et
al. combined template detection and removal with the in-
dex building process in large scale search engines to increase
accuracy and speed. They segmented pages into blocks and
clustered them based upon their styles and positions; then
similar clusters among different pages were identified as part
of the template [6].

In general, template detection algorithms identify the con-
tent by removing identical parts found in all web pages. This
is an accurate approach but has been found to be too bur-
densome. The reason is that models need to be built for
each website. This means pages in each site should share
the same template. Furthermore, these methods often in-
correctly assume that uninformative segments are largely
repeated across pages (this is clearly not the case for vary-
ing text advertisements or lists of related articles) and any
updates of the layout or structure may result in the tem-
plate’s failure.

Conversely, in the CleanEval shared task, only a few pages
are available from the same site, thus requiring a more gen-
eral approach. The winner of the CleanEval task split pages
by their tags into a sequence of blocks and then labeled each
block as “content” or “noise” using conditional random fields
with a number of block-level features [23].

There are sets of content extraction approaches based on
statistical information of web pages. In 2001, Finn et al.
introduced the Body Text Extraction (BTE) algorithm to

improve the accuracy of the content’s classifier for digital
libraries [12]. They interpreted an HTML document as a
sequence of word and tag tokens, and then extracted con-
tent by identifying a single, continuous region which contains
the most words and the least HTML tags. To overcome the
restriction of BTE in discovering only a single continuous
block of text, Pinto et al. [24] extended this method to con-
struct Document Slope Curves (DSC), in which a windowing
technique is used to locate document regions in which word
tokens are more frequent than tag tokens. They used this
technique to improve performance and efficiency for answer-
ing questions with web data in their QuASM system.

Mantratzis et al. presented an approach named Link
Quota Filter (LQF) to identify link lists and navigation ele-
ments by identifying DOM elements which have a high ratio
of text residing in hyperlink anchors [22]. It can be ap-
plied to content extraction by removing the resulting link
blocks from the document. The drawback of this method is
that it relies on Structure elements, and it can only identify
hyperlink-type noise.

Debnath et al. proposed the FeatureExtractor (FE) and
KFeatureExtractor (KFE) techniques based on block seg-
mentation of the HTML document [9, 10]. Each block is
analyzed for particular features such as the amount of text,
the presence of images and script code. Content text is ex-
tracted by selecting blocks that correspond best to a desired
feature, e.g. the presence of most text.

The Content Code Blurring (CCB) algorithm was intro-
duced by Gottron in 2008 [15]. Content regions are de-
tected in homogeneously formatted source code character
sequences.

Weninger et al. introduced the Content Extraction via
Tag Ratios (CETR) algorithm, a method to extract content
text from diverse web pages using the HTML document’s
tag ratios [27]. The approach computes tag ratios on a line-
by-line basis and then clusters the resulting histogram into
content and noise areas. This is a laconic and efficient al-
gorithm, however vulnerable to the page’s source code style
changes.

Kohlschütter et al. developed a simple, yet effective tech-
nique to classify individual text elements from a web page [18].
They analyzed a small set of shallow text features, which
were theoretically grounded by stochastic text generation
processes from Quantitative Linguistics, for boilerplate de-
tection. Their study provides theoretical support for the
method in this paper.

Gupta et al. attempted to combine different heuristics
into one system called the Crunch framework [16]. They
demonstrated that a well-chosen combination of different
content extraction algorithms can provide better results than
a single approach on its own. Since Crunch, several new
content extraction algorithms have been developed. Then
Gottron developed CombineE framework, a more recent en-
semble method, which made it easier to configure ensembles
of content extraction algorithms [14].

3. TEXT DENSITY
Let’s take the news article from The New York Times1

shown in Figure 1 as an example. This page is typical of
the web: the banner, navigation and advertisements take

1http://www.nytimes.com

up about half space on the page while the content of the
page is confined to a relatively small space.

Figure 1: The New York Times web page article

To extract content from this web page, we take advantage
of typical text features of content and noise. It was found
that the noise in web pages is usually highly formatted and
contains less text and brief sentences. On the other hand,
the content is commonly lengthy and simply formatted. The
example in Figure 1 also supports this observation.

3.1 DOM Tree
Document Object Model (DOM) [1] is a standardized,

platform and language independent interface for accessing
and updating content, structure and style of documents.
Each HTML page corresponds to a DOM tree where tags
are internal nodes and the detailed text and images are leaf
nodes.

Example 1. Below is a brief segment of HTML code from
Figure 1.
1. <div class="main">

2. <div class="article">

3. <div class="articleHeadline">

4. South Korea to Hold Artillery Drills on Island</div>

5. <div class="articleBody">

6. . . . The announcement came as. . .

7. <a>Bill Richardson. . .

8. </div></div></div>

Example 1 shows a segment of HTML code from Figure 1,
and Figure 2 shows the DOM tree of Example 1.

South Korea The announcement . . .

Bill Richardson

Figure 2: The DOM tree of Example 1.

Notice that our study of HTML web pages begins from
the <body> tag since all the viewable parts in a web page
are within the scope of <body>.

3.2 Text Density
Once an HTML document has been parsed and is repre-

sented by a DOM tree, the number of characters and tags
that each node contains can be figured out. Then, such
statistical information can be added to the node.

• CharNumber : number of all characters in its subtree.

• TagNumber : number of all tags in its subtree.

Furthermore, we can compute the ratios of the number of
characters to the number of tags per node. Now, we define
the Text Density, the basis of our method, as follows:

Definition 1. If i is a tag (corresponding to an element
node in DOM) in a web page, then the tag i’s Text Density
(TDi) is the ratio of its CharNumber to its TagNumber:

TDi =
Ci

Ti

where Ci is the number of all characters under i, Ti is the
number of all tags under i. Note that if Ti is 0, it should be
set to 1.
TDi is a measure of the density of each node’s text in a

web page. It assigns high values for nodes that commonly
contain long and simply formatted text and low values for
highly formatted nodes containing less, brief text. It is useful
for determining whether a part of a web page is meaning-
ful or not. Clearly, content in a web page will be assigned
relatively high density.

Before performing the computation, script, comment and
style tags are removed from the DOM tree because such in-
formation is not visible and would likely skew the results if
included in computation. In the likely case where the num-
ber of tags under a particular node is 0, the density is set to
the number of characters the node contains. The Compute-
Density algorithm is described as Algorithm 1 where N is a
DOM node being computed.

Computing the text density is a recursive task as evident
from the simplicity of Algorithm 1. Example 2 below shows
the text density for each node of Example 1.

Example 2. The text density for the five tags in Exam-
ple 1 are computed as follows:

Algorithm 1 Pseudocode of ComputeDensity(N)

1: INPUT: N
2: OUTPUT: N
3: for all child node C in N do
4: ComputeDensity(C)
5: end for
6: N.CharNumber ← CountChar(N)
7: N.TagNumber ← CountTag(N)
8: if N.TagNumber == 0 then
9: N.TagNumber ← 1

10: end if
11: N.Density ← N.CharNumber/N.TagNumber

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

Node index of the DOM tree by inorder traversal

T
e
x
t
D

e
n
s
it
y

Figure 3: Text density for each node from NYtimes
web page

1. <div "main">: Chars=85, Tags=4, Density=21.25
2. <div "article">: Chars=85, Tags=3, Density=28.33
3. <div "articleHeadline">: Chars=46, Tags=1, Density=46
4. <div "articleBody">: Chars=39, Tags=1, Density=39
5. <a>: Chars=15, Tags=1, Density=15

Figure 3 shows the resulting density-histogram for the
page in Figure 1. It can be seen that there are nodes with
a relatively high text density. Intuitively, we can take the
high text density portion as the web page’s content.

3.3 Composite Text Density
With further study, we find that most of the noise in the

web pages consists of hyperlinks. The example web page in
Figure 1 supports this observation.

Based on the above discussion, we calculate additional
statistical information per node as below:

• LinkCharNumber : number of all hyperlink characters
in its subtree

• LinkTagNumber : number of all hyperlink tags in its
subtree

According to the four pieces of statistical information men-
tioned above, we redefine the Text Density. In order to dis-
tinguish it from the Text Density defined above, we call it
Composite Text Density. Unless otherwise specified, we use
Text Density to refer to these two densities.

Definition 2. If i is a tag (corresponding to an element
node in DOM) in a web page, then its Composite Text Den-

sity (CTDi) is:

CTDi =
Ci

Ti
log

ln(
Ci

¬LCi
LCi+

LCb
Cb

Ci+e)
(
Ci

LCi

Ti

LTi
)

where Ci is the number of all characters under i, Ti is the
number of all tags under i, LCi is the number of all hyperlink
characters under i, ¬LCi is the number of all non-hyperlink
characters under i, LTi is the number of all hyperlink tags
under i, LCb is the number of all hyperlink characters under
the <body> tag and Cb is the number of all characters under
the <body> tag. Note that when denominators of the formula
are 0, set them to 1.

In Definition 2, Ci
LCi

is a measure of the proportion of hy-

perlink texts in i; accordingly, Ti
LTi

is a measure of the pro-

portion of hyperlink tags. When tag i contains numerous
non-hyperlink characters and few hyperlinks, they will as-
sign high values to it, and vice versa. Meanwhile, Ci

¬LCi
LCi

would get a low value in this case, and high otherwise. The
role of LCb

Cb
Ci is to maintain balance by preventing nodes

containing lengthy and homogeneously formatted text from
getting an extremely high values, or nodes which contain
brief text (e.g., news headlines or one sentence paragraphs)
from getting extremely low values.

We argue that a node with too many hyperlinks and less
text is less important, thus getting a low density value; and a
node that contains much non-hyperlink text and few hyper-
links is more important, and receives a high density value.
Clearly, a node’s density will be zero if there are only hyper-
links in its subtree. In another extreme case, all tags of a
web page which have no hyperlinks will get an infinite den-
sity. Thus, we would classify such a page as not containing
noise.

Compared to Figure 3, Composite Text Density, shown
in Figure 4, is better suited for classification because of the
more obvious differences between sections. These two cal-
culation methods of Text Density are discussed further in
Section 5.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000

Node index of the DOM tree by inorder traversal

C
o
m

p
o
s
it
e
 T

e
x
t
D

e
n
s
it
y

Figure 4: Composite text density for each node from
NYtimes web page

4. CONTENT EXTRACTION
In this section we describe the technique used to extract

the content. The idea behind this approach is to determine
a threshold t which divides nodes into content or noise sec-
tions. Simply, any node with text density greater than or

equal to t should be labeled as content; and any node should
be labeled as noise if its text density is less than t. The prob-
lem then becomes a matter of finding the best value of t and
a way to extracting the content completely.

4.1 Threshold
Intuitively, since the <body> tag is the root node that

we compute, therefore it should contains both content and
noise. This means that it contains more text than noise,
and more hyperlinks than meaningful content. Hence, its
text density should be an intermediate value sufficient to
distinguish between the two. Empirically, we set the <body>

tag’s text density as the threshold in our study. It must be
noted that this criterion is slightly modified in section 4.2.

4.2 DensitySum
It is easy to see that some nodes’ text density is abnor-

mally different from the surrounding nodes in Figure 3 and 4.
For instance, pictures, hyperlinks, the byline or dateline of
news articles, or very short paragraphs in the main arti-
cle and references of an article may have abnormally low
text density; conversely, some noise nodes (e.g., copyright
or disclaimer information) may get an abnormally high text
density. The authors of [18] also noted this fact. Therefore,
many content nodes may be lost if we simply label a node as
content or noise just according to the threshold; and some
noise nodes may be retained.

To solve this problem, we propose a technique called Den-
sitySum. It is known that Data Smoothing can help with this
problem to a certain extent by smoothing outlying peaks and
valleys, increasing cohesiveness within sections and differ-
ences between sections. In general, although data smooth-
ing can achieve good results, it may still lose some low-
density content nodes; meanwhile, some noisy nodes may
be retained because of text density increase.

DensitySum, is based on the observation that a content
block of a web page belongs to an ancestor node in the struc-
ture of DOM; and as mentioned before, the text density
of content nodes is much higher than that of noise nodes.
Therefore, the content block (i.e., a node in DOM) will get
a peak value if we add up its children’s text densities. Here,
we define DensitySum as below:

Definition 3. If N is a tag (corresponding to an element
node in DOM) in a web page and i is a child of N , then N ’s
DensitySum is the sum of all its children’s text densities:

DensitySumN =
∑
i∈C

TextDensityi

Where C is the set of N ’s children and TextDensityi is
the text density of tag i.

Note that TextDensity here is just a general term; we use
Text Density or Composite Text Density in practice.

For a simple case, if there exists just one content block,
we identify the content by looking for the node under the
<body> tag with the maximum DensitySum, then mark it as
content. Afterwards, we extract the content by keeping its
ancestors and subtrees.

Note that in many cases, the web page contains more
than one content block. Therefore, for each node in which
the text density is greater than the threshold, we apply the
same method described above to extract content.

Moreover, in some web pages, the content block’s text den-
sity may be less than the <body>’s text density. This block

will be lost if we simply use the <body>’s text density as
threshold. To resolve this problem, the algorithm first finds
the maximum DensitySum tag in the whole page, without
thresholding. Next, we set the minimum text density of
the node in the path from the maximum DensitySum tag
to <body> tag as threshold. The simple process of content
extraction using DensitySum can be seen in Algorithm 2.

Algorithm 2 Pseudocode of ExtractContent(N)

1: INPUT: N
2: if N.TextDensity >= threshold then
3: T ← FindMaxDensitySumTag(N)
4: MarkContent(T)
5: for all child node C in N do
6: ExtractContent(C)
7: end for
8: end if

4.3 Implementation Details
The program is implemented using Tidy2 and RapidXml3

in C++. Since there are several types of errors (e.g., non-
standard tags, incorrect encoding of HTML files) in web
pages, parsing these web pages directly would fail. We
use Tidy to correct such errors, and output them as stan-
dard XHTML documents. Afterwards, the XHTML docu-
ments are parsed into DOM trees using RapidXml. Before
text densities are computed, the algorithm removes invisible
parts of an HTML document: scripts, style definitions

and comments. Given their similar roles in a webpage, but-
tons and drop-down lists are treated as hyperlinks.

Three distinct algorithms are implemented. The first is
the Text Density with DensitySum method, hereafter re-
ferred to as CETD-DS. The second is the Composite Text
Density with Data Smoothing method, which, hereafter re-
ferred to as CECTD-S; here it is simply weighted averag-
ing with sibling nodes. The last one is the Composite Text
Density with DensitySum method, hereafter referred to as
CECTD-DS. We use Content Extraction via Text Density
(CETD) to refer to the three algorithms collectively.

5. EXPERIMENT
In this section we describe experiments on real world data

from various web sites to demonstrate the effectiveness of our
method. Data sets used in our experiments and evaluation
measures are described first. We then present and discuss
our experimental results.

5.1 Data Set
In our experiments we use data from two sources: (1)

development and evaluation data sets from the CleanEval
competition, and (2) the data sets we gathered from several
web sites.

CleanEval: CleanEval is a shared task and competitive
evaluation on the topic of cleaning arbitrary web pages [23].
Besides extracting content, the original CleanEval competi-
tion also asked participants to annotate the structure of the
web pages: identify lists, paragraphs and headers. In this
paper, we just focus on extracting content from arbitrary

2http://tidy.sourceforge.net/
3http://rapidxml.sourceforge.net/

web pages. This data set includes four divisions: a develop-
ment set and an evaluation set in both English and Chinese
languages which are all hand-labeled. It is a diverse data
set, only a few pages are used from each site, and the sites
use various styles and structures.

However, we found some errors in the data of CleanEval’s
gold standard in the experiment, for instance, garbled char-
acters or texts clearly not part of the content. Therefore, we
manually extracted the main content of these pages using a
web browser and saved it into text files (gold standard) in
UTF-8. In our experiments, we only use the English data
set, and do not distinguish between development and evalua-
tion documents since our approach does not require training.

CETD: In order to evaluate our methods on varied sources,
we produced a data set (which can be obtained from the
author’s website4). This data set is separated into two non-
overlapping sets. (1) The Big 5 : Ars Technica, BBC, Ya-
hoo!, New York Times, Wikipedia, and (2) the Chaos data
set chosen randomly from Google News and the best-known
blog platforms such as WordPress and Blogger. For our pur-
poses we arbitrarily selected 100 pages from each of the Big
5 and 200 pages from Chaos. All these pages’ contents were
labeled manually using a web browser and saved as UTF-8
text files to serve as the gold standard.

5.2 Performance Metrics
Standard metrics were used to evaluate and compare the

performance of different approaches. Specifically, precision,
recall and F1-scores were calculated by comparing the results
of each method against the hand-labeled gold standard. Let
a be the text in the extraction result and b be the text in the
gold standard. Precision, recall and F1-scores then follow
from:

P =
LCS(a, b).length

a.length
,R =

LCS(a, b).length

b.length
(1)

F1 =
2× P ×R
P +R

(2)

where LCS(a, b) is the longest common subsequence be-
tween a and b. It is important to note that every word in
the document is considered to be distinct even if two words
are lexically the same. However, other methods, such as
CETR, treated a and b as a bag of words, i.e., two words
are considered the same if they are lexically the same. The
bag of words measurement is more lenient, thus the scores
of these methods may be further inflated.

CleanEval uses a different metric to evaluate the partic-
ipants’ performance. The scoring method is based on the
Levenshtein Distance from the output of an extraction al-
gorithm to the gold standard text (the number of insertions
and removals of words necessary to align the gold standard
text with the output of the extraction algorithm; substitu-
tions are not allowed). The full formula is:

Score(a, b) = 1− distance(a, b)

alignmentLength(a, b)
(3)

where alignmentLength(a, b) is the number of operations
(insert, remove, or align) required to align two word se-
quences. The Levenshtein distance is relatively expensive to
compute, taking O(|a|×|b|) time, which can be prohibitively
large when |a| and/or |b| are sufficiently large. We find that

4http://ofey.me/projects/cetd/

Table 1: Results for CETD-DS on various domains
Source Precision Recall F1 Score
CleanEval-Eng 92.96% 94.52% 93.73% 88.96%
NYTimes 98.38% 95.84% 97.09% 94.42%
Yahoo! 83.16% 85.90% 84.51% 72.84%
Wikipedia 98.32% 97.22% 97.77% 95.76%
BBC 84.39% 95.21% 89.48% 80.66%
Ars Technica 97.81% 98.85% 98.33% 96.71%
Chaos 92.23% 94.99% 93.59% 88.76%

Table 2: Results for CECTD-DS on various domains
Source Precision Recall F1 Score
CleanEval-Eng 95.87% 97.15% 96.51% 93.87%
NYTimes 99.69% 98.16% 98.92% 97.86%
Yahoo! 84.59% 93.99% 89.04% 80.71%
Wikipedia 98.25% 92.77% 95.43% 91.49%
BBC 86.15% 97.95% 91.67% 84.44%
Ars Technica 98.04% 99.51% 98.76% 97.57%
Chaos 96.21% 96.10% 96.15% 93.47%

our data sets frequently include documents which are that
large (i.e., size greater than 10,000 words). CleanEval’s scor-
ing script takes an extremely long time to return results, or
even an “out of memory” error.

CleanEval’s metric can be transformed into the following
formula:

Score(a, b) =
LCS(a, b).length

a.length+ b.length− LCS(a, b).length
(4)

Therefore, we implemented a test program using Longest
Common Subsequence instead. In our experiments, it per-
formed very well, and is fast and robust.

5.3 Alternative Approaches
In order to evaluate the performance of our methods, we

compare them with several other content extraction algo-
rithms.

Several other algorithms (BTE, DSC, FE, KFE, LQ, CCB)
described in Section 2 have been implemented in Java for
the CombineE framework [14]. In addition, CETR was also
implemented in Java [27]. Evaluation was performed by pro-
viding each HTML document as input to each algorithm and
collecting the results.

5.4 Result
All results are collected by calculating the average of each

metrics over all examples.
Table 1 presents the results of the Content Extraction via

Text Density with DensitySum (CETD-DS) method when
given the task of extracting contents from the CleanEval,
Big 5 and the Chaos data sets.

Table 2 presents the results of Content Extraction via
Composite Text Density with DensitySum (CECTD-DS) method.

Table 1 and 2 clearly show that these two methods per-
form very well, especially CECTD-DS, which performs bet-
ter than CETD-DS on the broader corpora. This shows that
Composite Text Density is more suitable than Text Density
as a measure of the importance of a tag in web pages.

Interestingly, the CETD-DS outperforms CECTD-DS for
Wikipedia, especially in recall. The reason for this phe-
nomenon is the high density of in-text hyperlinks and low

Table 3: Results for CECTD-S on various domains
Source Precision Recall F1 Score
CleanEval-Eng 90.35% 92.60% 91.46% 87.24%
NYTimes 96.72% 96.56% 96.64% 94.41%
Yahoo! 80.33% 93.34% 86.35% 76.16%
Wikipedia 98.02% 97.61% 97.81% 95.75%
BBC 82.55% 93.77% 87.80% 79.65%
Ars Technica 94.61% 93.56% 94.08% 91.65%
Chaos 89.64% 92.86% 91.22% 86.17%

noise in Wikipedia pages. For the Composite Text Density
method, these hyperlink tags in contents may assign their
ancestor tags to a low density value, even lower than the
threshold. However, the Text Density method could be un-
affected.

Table 3 presents the results of Content Extraction via
Composite Text Density with Smoothing (CECTD-S) method.

Clearly, Table 2 and 3 show that CECTD-DS performs
far better than CECTD-S for most data sets, again except
the Wikipedia site. They demonstrate that DensitySum for
deals more effectively than data smoothing with the situa-
tion where content nodes’ text density is abnormally lower
than the threshold, and noisy nodes’ text density is abnor-
mally higher than threshold.

Overall, these results show that the CECTD-DS performs
far better than CETD-DS and CECTD-S. It is exciting that
the CleanEval scores are higher than the winner of CleanEval
competition, which only scored 84.1% on the English data
set [23].

The results show that the precision of all three methods
is relatively lower when applied to Yahoo! and BBC (com-
pared with other sources). For Yahoo!, it is probably be-
cause its web pages contain user comments after each arti-
cle; and these comments’ structure hierarchies are very deep
and separate from the content. That is why our method
cannot extract the whole comments block. It is easy to see
more precise results from sources such as Ars Technica which
hides comments by default, and NYTimes which does not
accept comments at all. As for BBC, the reason is that there
are hidden disclaimers at the bottom of each page, with very
long text. These disclaimers, which should not be computed
because they are not visible in the browser, are included in
the results.

5.4.1 Methods Comparison
In order to show the effectiveness of our methods, we com-

pare the above performance with the alternative approaches
described earlier in this section. Table 4 presents the results
with the best approach for each data source in bold.

Interestingly, the DSC algorithm does not perform better
than the BTE algorithm, even though it actually extends
the BTE algorithm. We believe this is due to the window-
ing technique which improves the precision, but reduces the
recall rate of the DSC algorithm.

It is noteworthy that CETR is very similar to our ap-
proach, whereby content is extracted by tag ratios. How-
ever, CETR loses the structural information of web pages,
since the tag ratios are computed on a line-by-line basis.
The results in Table 4, 5 and 6 show that the Composite
Text Density and DensitySum methods outperform CETR.

Table 5 and 6 show that other methods typically achieve
either a high recall or a high precision but rarely both. Our

CETD performs more consistently than other algorithms
with overall high scores in both metrics, and CECTD-DS
is the best performing algorithm in most data sets with the
average F1-score 8.79% higher than the best score among
other approaches..

5.5 Discussion
The results show that CETD is an effective and robust

content extraction algorithm, which performs relatively well
even on non-news web corpora with considerable diversity,
such as the CleanEval data set. Note that CETD does not
require manual-labeled training examples since it is a com-
pletely unsupervised algorithm.

The results also show that CECTD-DS outperforms CETD-
DS and CECTD-S on broader corpora. It shows the Com-
posite Text Density and DensitySum techniques are more
effective than Text Density and Data Smoothing.

For practical purposes, users usually value recall over pre-
cision as a performance metric. Although, CECTD-DS can
achieve a very high recall rate, users can still see a marked
increase in recall and a sharp decrease in precision by reduc-
ing the threshold. This precision/recall tradeoff is shown in
Figure 5. We set the threshold in actual use as the base
value, and use a coefficient λ to adjust the threshold value
in this experiment. Note that the threshold must be lower
than the text density of the <body> tag, otherwise the whole
page will be viewed as noise. When λ = 0, the recall is al-
ways 100% because all nodes in DOM are included. For the
Yahoo! domain, shown in Figure 5, a good tradeoff might be
λ = 0.9. Finding a good threshold value is difficult. In cur-
rent experiments, we set λ = 1, which can already achieve
very good results on various domains.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

S
c
o
re

λ

Precision

Recall
F1

Figure 5: Precision, Recall and F1 tradeoff for Ya-
hoo! as the threshold coefficient (λ) increases

In contrast to most other methods, which just output un-
formatted text, content with complete structure information
can be obtained by CETD because all operations are done
in the DOM tree. Therefore, CETD can be easily integrated
with other applications.

Many current methods only extract the most probable
content section. However, there is no rule that a web page
may only have a single content section. There are many
web pages, especially blogs where content is separated by

horizontal lines or other delimiters. CETD is not affected
by multiple content sections.

Despite many advantages of our algorithm, there are some
weaknesses. It does not perform well with some site cate-
gories, such as video and picture sites. The contents of such
sites are videos or pictures as well as the comments under
them. Therefore, our findings do not hold for these sites.
For Youtube, CETD can only extract comments. Another
situation where CETD does not perform well is portal home
pages. These pages usually contain a vast array of menus
and news titles or short news descriptions, and most of these
are hyperlinks. CETD has problems discerning the content
section(s) of these types of web pages. However, in gen-
eral, these pages have no topic. Therefore, extracting the
contents of these pages does not make much sense.

6. CONCLUSIONS
In this paper, we have proposed a method for extracting

the contents from web pages by Text Density, based on the
observation that the content text is usually lengthy and sim-
ply formatted, while noise is usually highly formatted and
contain less text with brief sentences. Observing that noise
contains many more hyperlinks than meaningful content, we
extended Text Density to Composite Text Density by adding
statistical information about hyperlinks. In order to extract
the content completely, we proposed the DensitySum tech-
nique instead of Data Smoothing. The effectiveness of the
CETD algorithm has been demonstrated. The results show
that CETD performs better than several other content ex-
traction algorithms.

In addition to its effectiveness, the greatest strength of this
algorithm over other methods is the simplicity of its concept
and implementation. Furthermore, this algorithm just re-
quires a web page as input, and then returns a cleaned page
without adjusting parameters, training and building classi-
fier models. CETD can also retain the original structure
information of the web pages, which can then be utilized for
other applications, such as small screen devices.

6.1 Future Work
In the research for this paper, we found that HTML Tidy

was not sufficiently robust since it may sometimes cause
some pages to not be properly parsed. In the future, the
WebKit5 Kernel will be incorporated to parse web pages, so
that pages rendered normally by a browser can be parsed
correctly.

Another area for further investigation is to identify the
hidden elements of the pages. In some sites, some of the
non-content part (e.g., BBC disclaimers) is not visible. We
may achieve better results if we can remove these non-visible
elements before the computation of text density, since these
elements are meaningless for the end user but treated as
non-tag text in the algorithm.

Intuitively, the meaningful content always occupies the
center of the screen. Obviously, a web page can be parti-
tioned into multiple segments or blocks, and usually the im-
portance of those blocks on a page is not equivalent. There-
fore, spatial information (e.g., position, size) will be added
to the density measure to further enhance the performance.

Finally, in this paper, we focused on the comparison be-
tween the content extraction methods based on statistical

5http://webkit.org/

Table 4: F1-measures for each algorithm in each source. The best scores are marked in bold.

Algorithm CleanEval-Eng NYTimes Yahoo! Wikipedia BBC Ars Technica Chaos Average

BTE 92.22% 76.23% 69.64% 82.74% 80.73% 80.44% 83.78% 80.83%

CCB 86.24% 72.03% 62.46% 67.82% 67.72% 76.92% 75.47% 72.66%

DSC 74.07% 91.68% 83.23% 48.62% 83.76% 93.09% 86.79% 80.17%

FE 17.56% 6.98% 9.41% 2.91% 7.15% 0.002% 11.46% 8.97%

KFE 74.13% 72.56% 62.61% 55.59% 64.43% 82.03% 69.78% 68.73%

LQF 91.23% 93.42% 75.40% 79.85% 83.93% 93.15% 88.01% 86.42%

CETR 88.59% 87.80% 73.27% 82.30% 76.76% 88.16% 82.63% 82.78%

CETD-DS 93.73% 97.09% 84.51% 97.77% 89.48% 98.33% 93.59% 93.50%

CECTD-S 91.46% 96.64% 86.35% 97.81% 87.80% 94.08% 91.22% 92.24%

CECTD-DS 96.51% 98.92% 89.04% 95.43% 91.67% 98.77% 96.15% 95.21%

Table 5: Precision-measures for each algorithm in each source. The best scores are marked in bold.

Algorithm CleanEval-Eng NYTimes Yahoo! Wikipedia BBC Ars Technica Chaos Average

BTE 88.87% 62.22% 54.94% 83.91% 69.09% 68.25% 76.36% 71.95%

CCB 80.61% 57.61% 46.90% 63.22% 53.52% 64.05% 64.45% 61.48%

DSC 91.94% 98.58% 96.54% 81.67% 89.27% 95.82% 94.45% 92.61%

FE 73.87% 97.51% 99.08% 98.79% 98.95% 0.005% 72.59% 77.26%

KFE 79.28% 73.82% 69.49% 73.76% 63.84% 81.35% 73.97% 73.64%

LQF 88.60% 90.02% 64.54% 83.60% 77.03% 88.40% 82.76% 82.14%

CETR 91.26% 85.19% 69.36% 94.69% 68.93% 83.06% 78.75% 81.61%

CETD-DS 92.96% 98.38% 83.16% 98.31% 84.39% 97.81% 93.59% 92.66%

CECTD-S 90.35% 96.72% 80.33% 98.02% 82.55% 94.61% 89.64% 90.33%

CECTD-DS 95.87% 99.69% 84.59% 98.25% 86.15% 98.04% 96.21% 94.11%

Table 6: Recall-measures for each algorithm in each source. The best scores are marked in bold.

Algorithm CleanEval-Eng NYTimes Yahoo! Wikipedia BBC Ars Technica Chaos Average

BTE 95.83% 98.38% 95.06% 81.60% 97.09% 97.91% 92.80% 94.10%

CCB 92.71% 96.09% 93.45% 73.14% 92.19% 96.27% 91.05% 90.70%

DSC 62.01% 85.67% 73.14% 34.61% 78.89% 90.52% 80.27% 72.16%

FE 9.97% 3.62% 4.94% 1.48% 3.71% 0.001% 6.22% 4.28%

KFE 69.61% 71.35% 56.97% 44.60% 65.02% 82.73% 66.04% 65.19%

LQF 94.02% 97.10% 90.65% 76.41% 92.17% 98.43% 93.98% 91.82%

CETR 86.08% 90.58% 77.65% 72.77% 86.58% 93.93% 86.92% 84.93%

CETD-DS 94.52% 95.84% 85.90% 97.22% 95.21% 98.85% 94.99% 94.65%

CECTD-S 92.60% 96.56% 93.34% 97.61% 93.77% 93.56% 91.22% 93.97%

CECTD-DS 97.15% 98.16% 93.99% 92.77% 97.95% 99.51% 96.10% 96.52%

information of web pages. VIPS, on the other hand, is a vi-
sual information based method which cannot be compared
directly as it outputs a set of page segments rather than ex-
tracted text. It can be deduced that CETD performs better
than VIPS since CETR outperform VIPS in [27]. In a future
study, we will do more experiments to verify this.

7. ACKNOWLEDGMENTS
The authors sincerely thank Tim Weninger, the author of

CETR, for the fruitful discussions and data access. We also
thank Thomas Gottron, author of the CombineE framework,
for some of the implementations used in this work; and the
CleanEval team for providing a standard evaluation data
set. This work is funded by NSFC (Grant Nos.60873237
and 61003168), Beijing Natural Science Foundation (Grant
No.4092037), Excellent Researcher Award Program and Ba-
sic Research Foundation of Beijing Institute of Technology.

8. REFERENCES
[1] W3C document object model. Website, 2009.

http://www.w3.org/DOM.

[2] B. Adelberg. Nodose—a tool for semi-automatically
extracting semi-structured data from text documents.
In Proceedings of SIGMOD ’98, pages 283–294, New
York, NY, USA, 1998. ACM.

[3] S. Baluja. Browsing on small screens: recasting
web-page segmentation into an efficient machine
learning framework. In Proceedings of WWW ’06,
pages 33–42, 2006.

[4] Z. Bar-Yossef and S. Rajagopalan. Template detection
via data mining and its applications. In Proceedings of
WWW ’02, pages 580–591, New York, NY, USA, 2002.

[5] D. Cai, S. Yu, J. Wen, and W. Ma. Extracting content
structure for web pages based on visual representation.
In Proceedings of APWeb’03, pages 406–417, 2003.

[6] L. Chen, S. Ye, and X. Li. Template detection for
large scale search engines. In Proceedings of SAC ’06,
pages 1094–1098, New York, NY, USA, 2006.

[7] Y. Chen, P. Fankhauser, and H.-J. Zhang. Detecting
web page structure for adaptive viewing on small form
factor devices. In Proceedings of WWW ’03, pages
225–233, 2003.

[8] B. D. Davison. Recognizing nepotistic links on the
web. In AAAI-2000 Workshop On Artificial
Intelligence For Web Search, pages 23–28, Austin,
Texas, 2000.

[9] S. Debnath, P. Mitra, and C. L. Giles. Automatic
extraction of informative blocks from webpages. In
Proceedings of SAC ’05, pages 1722–1726, 2005.

[10] S. Debnath, P. Mitra, and C. L. Giles. Identifying
content blocks from web documents. ISMIS,
3488(5):285–293, November 2005.

[11] D. Fernandes, E. S. de Moura, B. Ribeiro-Neto, A. S.
da Silva, and M. A. Gonçalves. Computing block
importance for searching on web sites. In Proceedings
of CIKM ’07, pages 165–174, 2007.

[12] A. Finn, N. Kushmerick, and B. Smyth. Fact or
fiction: Content classification for digital libraries. In
Joint DELOS-NSF Workshop: Personalization and
Recommender Systems in Digital Libraries, 2001.

[13] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In WWW ’05,
pages 830–839, New York, NY, USA, 2005. ACM.

[14] T. Gottron. Combining content extraction heuristics:
the CombinE system. In Proceedings of iiWAS ’08,
pages 591–595, 2008.

[15] T. Gottron. Content code blurring: A new approach
to content extraction. In Proceedings of DEXA ’08,
pages 29–33, 2008.

[16] S. Gupta, G. Kaiser, and S. Stolfo. Extracting context
to improve accuracy for html content extraction. In
Proceedings of WWW ’05, pages 1114–1115, 2005.

[17] H. Kao, S. Lin, J. Ho, and M. Chen. Mining web
informative structures and contents based on entropy
analysis. In IEEE Transactions on Knowledge and
Data Engineering, pages 41–55, Piscataway, NJ, USA,
2004.

[18] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proceedings of WSDM ’10, pages 441–450, 2010.

[19] N. Kushmerick. Learning to remove internet
advertisements. In Proceedings of AGENTS ’99, pages
175–181, New York, NY, USA, 1999.

[20] S. Lin and J. Ho. Discovering informative content
blocks from web documents. In Proceedings of
SIGKDD ’02, pages 588–593, New York, NY, USA,
2002.

[21] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled
wrapper construction system for web information
sources. In Proceedings of ICDE ’00, pages 611–621,
2000.

[22] C. Mantratzis, M. Orgun, and S. Cassidy. Separating
xhtml content from navigation clutter using
dom-structure block analysis. In Proceedings of
HYPERTEXT ’05, pages 145–147, 2005.

[23] M. Marek, P. Pecina, and M. Spousta. Web page
cleaning with conditional random fields. In
Proceedings of the Web as Corpus Workshop
(WAC3),Cleaneval Session, 2007.

[24] D. Pinto, M. Branstein, R. Coleman, W. B. Croft,
M. King, W. Li, and X. Wei. Quasm: A system for
question answering using semi-structured data. In
Proceedings of JCDL ’02, pages 46–55, 2002.

[25] A. F. R. Rahman, H. Alam, and R. Hartono. Content
extraction from html documents. In WDA2001, pages
7–10, 2001.

[26] R. Song, H. Liu, J. Wen, and W. Ma. Learning block
importance models for web pages. In Proceedings of
WWW ’04, pages 203–211, New York, NY, USA, 2004.

[27] T. Weninger, W. H. Hsu, and J. Han. Cetr - content
extraction via tag ratios. In Proceedings of WWW ’10,
pages 971–980, New York, NY, USA, 2010.

[28] L. Yi, B. Liu, and X. Li. Eliminating noisy
information in web pages for data mining. In
Proceedings of SIGKDD ’03, pages 296–305, New
York, NY, USA, 2003.

